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Abstract Bearing in mind the insight into the Hohenberg–
Kohn theorem for Coulomb systems provided recently by
Kryachko (Int J Quantum Chem 103:818, 2005), we pres-
ent a re-statement of this theorem through an elaboration on
Lieb’s proof as well as an extension of this theorem to finite
subspaces.
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1 Introduction

Density functional theory, DFT [1–12] has become a basic
tool in contemporary quantum chemistry [13–15] but, as
shown some decades ago by Lieb [16] and more recently
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by several authors [17–23] due to its subtleties, this theory
cannot be considered as yet to be entirely elaborated.

The Hohenberg–Kohn theorem [24,25] has played a
fundamental role in the development of DFT. In a recent
work, however, Kryachko [26] has pointed out that the usual
reductio ad absurdum proof of this theorem is unsatisfactory
since the would-be-refuted assumptions on the one-electron
density and the assumption on the external potential evince
incompatibilities with the Kato cusp condition. Neverthe-
less, as shown by Kryachko [26], application of the Kato
cusp conditions actually leads to a satisfactory proof of this
theorem.

In the present work, within the context of Kryachko’s anal-
ysis, we advance an alternative proof of the Hohenberg–Kohn
theorem, which is based on the rigorous examination of the
original formulation of this theorem made by Lieb [16], a
number of years ago. In Lieb’s proof, it is required that the
N -particle wavefunction Ψ not vanish in a set of positive
measure. This condition, however, cannot be easily fulfilled.
In order to avoid this difficulty we present below an essen-
tially algebraic proof of the Hohenberg–Kohn theorem which
dispenses with the latter condition.

In addition, we propose an extension of the present refor-
mulation of the Hohenberg–Kohn theorem to the case of finite
subspaces. This finite subspace problem has been treated in
a restricted sense by Epstein and Rosenthal [27] and by Kat-
riel et al. [28,29] and in a general sense by Harriman [30].
More recently, Görling and Ernzerhof have reexamined this
problem in relation to the linear response method to deter-
mine Kohn–Sham orbitals (and, purportedly, Kohn–Sham
wavefunctions; strictly speaking, it is not possible to attach a
rigorous meaning to Kohn–Sham wavefunctions as through
the application of the variational principle there only result
Kohn–Sham single-particle equations and their correspond-
ing single-particle orbitals) from electron densities [31].
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In order to set the proper background for our discussion,
we review in Sect. 1 both the original proof given by
Hohenberg and Kohn, in the context of Kryachko’s work,
as well as Lieb’s reformulation. In Sect. 2 we discuss the
modifications introduced in our present proof. In Sect. 3, we
consider the conditions that must be fulfilled in order that
this theorem be extended to finite subspaces.

2 The original Hohenberg–Kohn proof and Lieb’s
reformulation

Let us consider a system formed by N -electrons interacting
with a positive background through an “external" potential

V (r1, . . . , rN ) =
N∑

i=1

v(ri ). (1)

The many-electron Hamiltonian for such a system is

Ĥv = Ĥo + V̂ (2)

where Ĥo is defined by

Ĥo = −1

2

∑
∇2

ri
+

N−1∑

i=1

N∑

j=i+1

1

|ri − r j | . (3)

It is assumed that the selected class {v(r)} of single-particle
external potentials is such that it possesses a ground-state
wavefunction {Ψ v

o }. The one-electron density ρvo (r) associ-
ated with Ψ v

o is defined by

ρvo (r1) = N
∫

d3r2 · · ·
∫

d3rN |Ψ v
o (r1, . . . , rN )|2. (4)

For such systems, the Hohenberg–Kohn theorem states
that there exists a one to one correspondence between an
external potential v(r) and the exact ground-state density
ρvo (r). The original proof of this theorem [24] is carried out
by reductio ad absurdum. Consider two potentials v(r) and
v′(r) differing by more than a constant. The exact ground-
state wavefunctions for the corresponding Hamiltonians Ĥv
(or Ĥv′ ) are assumed to be different (actually, these assump-
tions immediately evoke the Kato theorem and show the
way to a proof that dispenses with the reductio ad absurdum
argument) and for this reason the following strict variational
inequalities hold:

〈Ψ v′
o |Ĥv|Ψ v′

o 〉 > 〈Ψ v
o |Ĥv|Ψ v

o 〉 ≡ Evo (5)

and

〈Ψ v
o |Ĥv′ |Ψ v

o 〉 > 〈Ψ v′
o |Ĥv′ |Ψ v′

o 〉 ≡ Ev
′

o . (6)

Adding these inequalities and carrying out the integration
over all coordinates but one, one obtains
∫

d3r(v′(r)− v(r))(ρv
′

0 (r)− ρv0 (r)) < 0 . (7)

Because Eq. (7) is a strict inequality, a contradiction ensues
(0 < 0) when it is assumed that different potentials yield the
same one-particle density. Thus, it follows that there is a one
to one correspondence between the exact ground-state one-
particle densities and their corresponding external potentials.

In the present notation, Lieb’s statement of this theorem
(Theorem 3.2 of Ref. [16]) is the following: suppose Ψ v

o
(respectively, Ψ v′

o ) is a ground state for v (respectively, v′)
and v �= v′ + constant . Then ρv0 (r) �= ρv

′
0 (r). Lieb’s proof

starts from the suppositions that ρv0 (r) = ρv
′

0 (r) = ρ0 and
Ψ v

o �= Ψ v′
o because they satisfy different Schrödinger equa-

tions, and proceeds as in the original proof showing that
this leads to a contradiction. As it was mentioned above,
the argument for writing the strict inequalities [Eqs. (5) and
(6)] in Hohenberg–Kohn’s paper [24] is based on the assump-
tion thatΨ v

o andΨ v′
o satisfy different Schrödinger equations,

namely, that Ψ v
o �= Ψ v′

o .
The fact that the space of single particle potentials is not

specified in the original Hohenberg–Kohn proof was rem-
edied in Lieb’s proof [16] by selecting this space as Y =
L3/2(R3)+ L∞(R3) (where f (x) ∈ Lm if

∫
dx | f (x)|m <

∞. f ∈ Lm
loc if f ∈ Lm and it is integrable in any bounded

set; f ∈ H1 if f,∇ f ∈ L2) and by demanding that v(r) ∈
Y . This choice—which follows from the requirement that
ρ1/2 ∈ H1(R3)—guarantees that the integral

∫
d3rρ(r)v(r)

(in fact, the essentially self-adjoint character of the
Hamiltonian [32]) is well defined.

An important difference arises, however, from the fact that
Lieb notes that in order to prove the statement that Ψ v

o and
Ψ v′

o satisfy different Schrödinger equations it is necessary to
show that the equivalence

V (r1, . . . , rN )Ψ (r1, . . . , rN )

= V ′(r1, . . . , rN )Ψ (r1, . . . , rN )

implies that v(r)= v′(r). Fulfillment of this condition
requires that the Ψ v

o corresponding to the external poten-
tial v ∈ Y not vanish on a set of positive measure. As has
been indicated by Lieb [16] (p. 255), the unique continuation
theorem may be invoked to guarantee thatΨ v

o does not vanish
in an open set. However, this theorem strictly holds only for
v ∈ L3

loc although it is believed to hold also for v ∈ Y . But
let us mention that there are subtle problems related to the
space to which a single particle potential belongs and to its
relation to the wavefunction. Thus, for example, as shown by
Englisch and Englisch [33], for a one particle case there exists
a non-vanishing density ρ (or equivalently, a non-vanishing
wavefunction given as Ψ = ρ1/2) which does not arise from
any v, in the sense that for a v = ρ−1/2∇2ρ1/2,−∇2 + v

cannot be defined as a semibounded operator. Precisely in
order to avoid these difficulties, we advance an algebraic
proof of the Hohenberg–Kohn theorem where these issues
are avoided.
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3 A re-statement of the Hohenberg–Kohn theorem

The present proof is essentially based on Lieb’s version of
the HK theorem (Theorem 3.2 and Remark (ii) in p. 255 of
Ref. [16]). But as mentioned above, in order to avoid some
mathematical complications, we have, however, removed the
assumption that Ψ v

o �= Ψ v′
o , i.e., we consider the case where

v �= v′ + constant but Ψ v
o = Ψ v′

o (Case I of Kryachko [26])
and have added the condition on the ground state wavefunc-
tion that it vanishes at most on a zero-measure set. Let Ĥo be
the Hamiltonian of an electronic Coulomb system without
external potential [cf. Eq. (3)]. In fact, the form of Ĥo is not
very important, as the proof is essentially algebraic. Let us
consider the many-electron Hamiltonian Ĥv given by Eq. (2).
We denote Y as in the above Section. We assume that ρvo is
the ground-state density of Ĥv if there exists a ground-state
wavefunctionΨ v

o of Ĥv . We denote by Evo the corresponding
eigenvalue.

Theorem 1 (Hohenberg–Kohn) Let v, v′ be in Y . Let ρvo
be a ground state density of Ĥv and ρv

′
o a ground state den-

sity of Ĥv′ . We assume that the ground state wavefunction
Ψ v

o of Ĥv vanishes at most on a Lebesgue’s zero-measure set
of R3N . Suppose that ρvo = ρv

′
o . Then almost everywhere in

the Lebesgue’s measure sense (a.e.)

v(r)− v′(r) = (Evo − Ev
′

o )/N . (8)

Proof We essentially make explicit what was implicit in
Lieb’s proof [16]. Let us introduce the notation∆E = Ev

′
o −

Evo , ∆v = v′ − v and ∆V = ∑N
i=1∆v(ri ). We have then

Ĥv = Ĥv′ −∆V and

Evo =〈Ψ v
o |Ĥv|Ψ v

o 〉 ≤ 〈Ψ v′
o |Ĥv|Ψ v′

o 〉= Ev
′

o −
∫
ρv

′
o ∆v. (9)

where the equal sign must be included as we are not assum-
ing that for v �= v′ + constant the condition Ψ v

o �= Ψ v′
o

holds.
So we get a ≥ 0 where a = ∆E−∫

ρo∆v, andρo = ρvo =
ρv

′
o . Reversing v and v′ we get similarly a ≤ 0. So a = 0

and this implies also that all the preceding inequalities are
in fact equalities. In particular, we have Evo = 〈Ψ v′

o |Ĥv|Ψ v′
o 〉

so Ψ v′
o is also a ground state of Ĥv: ĤvΨ v′

o = EvoΨ
v′
o . In

the same way: Ĥv′Ψ v
o = Ev

′
o Ψ

v
o . Using also ĤvΨ v

o = EoΨ
v
o

and Ĥv′ − Ĥv = ∆V , by subtraction we obtain

∆V Ψ v
o = ∆E Ψ v

o . (10)

or, equivalently,

(∆V −∆E)Ψ v
o = 0. (11)

Since we have by assumption that Ψ vanishes at most on
a set of zero measure (we take it to be a nodeless ground
state wavefunction) it follows from Eq. (11) that∆V = ∆E
almost everywhere for (r1, . . . , rN ) ∈ R3N , except for a set

of zero measure. Then setting r1 = · · · = rN = r we obtain
N ∆v(r) = ∆E (see also Harriman’s comments in p. 641
and in the Appendix of Ref. [30]). The present argument is
rigorous provided v is continuous; otherwise, the proof can
be completed using Lemma 1 proved in the Appendix. ��

4 The Hohenberg–Kohn theorem in finite subspaces

We first state a Hohenberg–Kohn theorem that holds in sub-
spaces which are not necessarily finite-dimensional.

Theorem 2 (Infinite-dimensional subspaces) Let v, v′ be
in Y . Let F be some subspace of the antisymmetric N-particle
Hilbert space (in the domains of Ĥv and Ĥv′ ) such that F be
stable under the action of Ĥv and Ĥv′ , i.e., (Ĥv F ⊂ F and
Ĥv′ F ⊂ F). Take ρvo a ground state density of the restriction
Ĥv|F and ρv

′
o a ground state density of Ĥv′ |F . Again, assume

that the ground state wavefunction vanishes at most on a set
of zero measure. Suppose that ρvo = ρv

′
o . Then

v(r)− v′(r) = (Ev0 − Ev
′

0 )/N . (12)

Proof It is carried out along the same steps as in Theorem 1,
except for the fact that Ψ v

o and Ψ v′
o must be in F in order to

apply the variational principle and obtain a = 0, and, hence,
Evo = 〈Ψ v′

o |Ĥv|Ψ v′
o 〉 implying that Ψ v′

o is a ground state of
Ĥv|F . ��

We see, therefore, that it is possible to extend the HK for-
mulation of Density Functional Theory to a subspace F as
long as the conditions of stability of Theorem 2 are satisfied.

However, as shown in Theorem 3 below, it is not possible,
in general, to satisfy the assumptions of Theorem 2. First
note that if Ĥv(F) ⊂ F and Ĥv′(F) ⊂ F then by taking the
difference we obtain ∆V (F) ⊂ F . We recall also that the
operator V̂ associated to a scalar potential V is defined by
(V̂ (Ψ ))(x) := V (x)Ψ (x).

Theorem 3 (Finite-dimensional subspaces) Let F be a
finite-dimensional subspace of L2(Rn) (n ≥ 1). We sup-
pose that F = V ect(u1(x), . . . , uM (x)) where the (ui (x))
is an orthonormal set (i.e.,

∫
ui u∗

j = δi j ) and such that
∑M

i=1 |ui (x)|2 > 0 a.e. for x ∈ Rn. Let V (x) be real-valued
potential, and continuous. Then

(V̂ (F) ⊂ F) �⇒ (V (x) = const on Rn).

We note that this theorem also holds with weaker assump-
tions, such as, for instance, F ⊂ L1

loc(Rn) (the space of
locally integrable functions on Rn), and V ∈ H1

loc(Rn) [i.e.
V,∇V ∈ L2

loc(Rn)].

Proof We first remark that V behaves on F as an M × M
matrix since it is a linear operator. So there exists M = (mi j )

such that
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V (x)ui (x) =
∑

j=1,...,M

mi j u j (x). (13)

Since u j is orthonormal, we have

mi j =
∫

Rn

dxui (x)
∗V (x)u j (x)

using (13). Since V is real we obtain mi j = m∗
j i and thus

M is an hermitian matrix. So, we can diagonalize M in an
orthonormal basis: there exists a unitary matrix P (P† P =
P P† = Id ) and a diagonal matrix D = diag(λ1, . . . , λM )

such that M = P† D P .
Let us write u(x) = (u1(x), . . . , uM (x)). Then (13) reads

V (x)u = Mu. So, it follows that

V (x)Pu = PV (x)u = PMu = P P† D Pu = D Pu.

Hence if we define ψ(x) = Pu and denote its components
as (ψ0(x), . . . , ψM (x)), we obtain:

V (x)ψi (x) = λiψi (x), i = 1, . . . ,M. (14)

We have simply diagonalized V (x) in an orthonormal basis
set. Then let us notice that

∑M
i=1 |ψi (x)|2 = ||ψ ||2 =

||u||2 = ∑M
i=1 |ui (x)|2 since P is unitary. Obviously this

quantity is non-negative and thus we have a.e. x ∈ Rn the
existence of an i ∈ {1, . . . ,M} such that ψi (x) �= 0. From
(14) we obtain V (x) = λi for this x . This implies finally that
the range of V is included in the finite set {λ1, . . . , λM }. For
a regular V (x) such as continuous or H1

loc this means that V
is a constant, which concludes the proof of Theorem 3. ��

A consequence of Theorem 3 is that, in general, it is not
possible to fulfill the stability conditions of Theorem 2 when
F is finite dimensional, except if we suppose that V (x) and
V ′(x) are constants as then they would trivially satisfy the
main conclusion of Theorem 2, namely,∆V = const. Let us
mention that this result is in agreement with the conclusion of
Görling and Ernzerhof for local potentials in finite subspaces
[see Eq. (A9) and the discussion below in Ref. [31]].

But in the infinite dimensional case Theorem 3 does not
hold and thus Theorem 2 becomes interesting. As an exam-
ple, let F = L2(R3) and v(x) = 1/(1 + |x |2). Then we
have obviously v(F) ⊂ F (since v(x) ≤ 1) but v(x) is not
constant.

5 Conclusions

The main contribution of this article is to provide an algebraic
proof for the Hohenberg–Kohn theorem that allows us to dis-
cuss in a very simple way the extensions of this theorem to
both infinite-dimensional and finite-dimensional subspaces.
In the former case, such an extension is possible as long as the
subspace is stable under the action of Ĥv . In the latter case,
when the external potentials V and V ′, or their one-particle
components v and v′ are constants.

Acknowledgments E.V.L. would like to express his gratitude to
FONACIT of Venezuela, for its support of the present work through
Project G-97000741.

6 Appendix

Lemma 1 Suppose that

v(r1)+ · · · + v(rN ) = 0, a.e. x = (r1, . . . , rN ) ∈ R3N .

(15)

Then v(r1) = 0 a.e. r1 ∈ R3.

Proof First note that we cannot (a priori) take r1 = r2 =
· · · = rN because {(r1, . . . , rN ) ∈ R3N , r1 = r2 = · · · =
rN } is a set of zero measure in R3N . To bypass this difficulty,
we consider a real-valued continuous function ρ(r)> 0,
defined on R3, such that

∫
ρ(r)dr = 1, and denote ρε(x) =

1
ε3 ρ

( x
ε

)
. We multiply Eq. (15) by ρε(x1−r1) · · · ρε(xN −rN )

and then integrate over (r1, . . . , rN ) ∈ R3N . We obtain

vε(r1)+ · · · + vε(rN ) = 0, a.e., (16)

where vε(x) = ∫
R3 v(y)ρε(x − y)dy (convolution product).

Then it is well known [34] that vε is a continuous function and
thus Eq. (16) holds everywhere and not only almost every-
where. Then we can take r1 = · · · = rN = r and conclude
that vε(r) = 0 for all r . On the other hand it is also well
known that, as ε → 0+ vε(r) → v(r) for a.e. r ∈ R3 (even-
tually for some subsequence vεn extracted from vε , [34]).
Hence we conclude that v(r) = 0 a.e. r ∈ R3. ��

References

1. Parr RG, Yang W (1989) Density functional theory of atoms and
molecules. Oxford University Press, Oxford

2. Dreizler RM, Gross EKU (1990) Density functional theory.
Springer, Berlin

3. Kryachko ES, Ludeña EV (1990) Energy density functional theory
of many electron systems. Kluwer, Dordrecht

4. March NH (1992) Electron density theory of atoms and molecules.
Academic, New York

5. Cioslowski J (ed) (2000) Many-electron densities and reduced
density matrices. Kluwer Academic/Plenum Publishers, New York

6. Gross EKU, Dreizler RM (eds) (1995) Density functional theory.
NATO ASI Series, vol B337. Plenum, New York

7. Seminario JM, Politzer P (eds) (1995) Modern density functional
theory: a tool for chemistry. Elsevier, Amsterdam

8. Dobson JF, Vignale G, Das MP, Electronic density functional the-
ory. Recent progress and new directions. Plenum Press, New York

9. Chong DP (ed) (1995) Recent advances in density functional
methods. World Scientific, Singapore

10. Geerlings P, de Proft F, Langenaeker W (eds) (1999) Density
functional theory. A bridge between chemistry and physics. VUB
University Press, Brussels

11. Nalewajski RF (ed) (1996) Density functional theory In: Topics
in current chemistry, vols 180–183. Springer, Berlin

123



Theor Chem Account (2007) 118:557–561 561

12. Sen KD (ed) (2002) Reviews in modern quantum chemistry: a
celebration of the contribution of Robert G. Parr. World Scientific,
Singapore

13. Koch W, Holthausen MC, A chemist’s guide to density functional
theory. Wiley-VCH, Weinheim

14. Kohanoff J, Gidopoulos NI (2003) In: Handbook of molecular
physics and quantum chemistry, vol. 2. Molecular electronic struc-
ture. Wiley, Chichester

15. Scuseria GE, Staroverov VN (2005) Ch. 12 In: Dykstra CE,
Frenking G, Kim KS, Scuseria GE (eds) Theory and application of
computational chemistry: the first 40 years (A volume of technical
and historical perspectives). Elsevier, Amsterdam

16. Lieb EH (1983) Int J Quantum Chem 24:243
17. Eschrig H (1996) The fundamentals of density functional theory.

Teubner, Sttutgart. Section 6.3
18. van Leeuwen R (2003) Adv Quantum Chem 43:24
19. Ludeña EV (2004) J Mol Struct (Theochem) 709:25
20. Ayers PW, Levy M (2005) J Chem Sci 117:507

21. Görling A (2005) J Chem Phys 123:062203
22. Ayers PW, Golden S, Levy M (2006) J Chem Phys 124:054101
23. Kutzelnigg W (2006) J Mol Struct (Theochem) 768:163
24. Hohenberg P, Kohn W (1964) Phys Rev 136B:864
25. Hohenberg P, Kohn W, Sham LJ (1990) Adv Quantum Chem 21:7
26. Kryachko ES (2005) Int J Quantum Chem 103:818
27. Epstein ST, Rosenthal CM (1976) J Chem Phys 64:247
28. Katriel J, Appellof CJ, Davidson ER (1981) Int J Quantum Chem

19:293
29. Meron E, Katriel J (1977) Phys Lett 61A:19
30. Harriman JE (1983) Phys Rev A 27:632
31. Görling A, Ernzerhof M (1995) Phys Rev A 51:4501
32. Reed M, Simon B (1975) Methods of modern mathematical phys-

ics II. Academic, New York
33. Englisch H, Englisch R (1983) Physica 121A:253
34. Rudin W (1987) Real and complex analysis 3rd edn. McGraw–

Hill, New York

123


	A re-statement of the Hohenberg--Kohn theorem and its extensionto finite subspaces
	Abstract 
	Introduction
	The original Hohenberg--Kohn proof and Lieb's reformulation
	A re-statement of the Hohenberg--Kohn theorem
	The Hohenberg--Kohn theorem in finite subspaces
	Conclusions
	Acknowledgments
	Appendix
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


